
 

A. Kok, I. Ilic Mestric,  
G. Valiyev & M. Street 

vol. 47, no. 2 (2020): 203-220  
https://doi.org/10.11610/isij.4714  

Published since 1998 ISSN 0861-5160 (print), ISSN 1314-2119 (online) 
Research Article 

 

 E-mail: arvid.kok@ncia.nato.int 

 

Cyber Threat Prediction with Machine Learning 

Arvid Kok  (), Ivana Ilic Mestric,  
Giavid Valiyev, Michael Street  

 Service Strategy & Innovation NATO C & I Agency, The Hague, Netherlands, 
https://www.ncia.nato.int/ 

A B S T R A C T : 

In this paper we address the approaches, techniques and results of applying 
machine learning techniques for cyber threat prediction. Timely discovery of 
advanced persistent threats is of utmost importance for the protection of 
NATO’s and its allies’ networks. Therefore, NATO and NATO Communication 
and Information Agency’s Cyber Security service line is constantly looking for 
improvements. During Coalition Warrior Interoperability Exercise (CWIX) 
event data was captured on a Red-Blue Team Simulation. The data set was 
then used to apply a variety of Machine Learning techniques: deep-learning, 
auto-encoding and clustering with outliers. 

A R T I C L E  I N F O : 

RECEIVED: 08 JULY 2020 

REVISED:  14 SEP 2020 

ONLINE:  22 SEP 2020 

K E Y W O R D S : 

cybersecurity, machine learning, deep learning, 
auto-encoding, DBSCAN, clustering with outliers, 
MITRE ATT@CK framework, KNIME Analytics  
Platform 

 Creative Commons BY-NC 4.0 
 

Introduction 
The NATO Communication and Information Agency (NCIA) Data Science Team 
supports projects related to data, (advanced) analytics, machine learning and 
visualization. This paper describes an increasingly popular area of Cyber Security 
and how Machine Learning techniques were used for Threat Detection – or per-
haps more accurate: Threat Prediction.   

Timely discovery of Advanced Persistent Threats (APT) is of utmost im-
portance for the protection of NATO’s and its allies’ networks. Hackers apply 

https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode


A. Kok, I. Ilic Mestric, G. Valiyev & M. Street,  ISIJ 47, no. 2 (2020): 203-220 
 

 204 

different techniques over longer periods when targeting a network. Cyber Se-
curity experts are tasked to detect the techniques, determine the tactics and 
recognize the APT. 

The experiments executed and described in this paper address data prepara-
tion and machine learning for technique and tactic prediction; potentially pre-
paring for APT discovery. Experiments for both known and unknown techniques 
are explored. 

Cyber Security Simulation  
NATO Allied Command Transformation (ACT), supported by NATO Communica-
tion and Information Agency (NCI Agency), performed a Cyber Security exercise, 
including a Red-Blue Team Simulation, during the 2019 Coalition Warrior Interop-
erability Exercise (CWIX) in Poland. During this exercise’s simulation the red team 
was using known hacking techniques, where the blue team was trying to detect. 
This simulation took place on an isolated network with simulated user activity. 

During the simulation NATO’s Cyber Security experts compared implemented 
detection methods with MITRE and the MITRE ATT@CK™ framework enriched 
methods. MITRE ATT&CK™ is a globally-accessible knowledge base of adversary 
tactics and techniques based on real-world observations. The ATT&CK 
knowledge base is used as a foundation for the development of specific threat 
models and methodologies in the private sector, in government, and in the cy-
bersecurity product and service community.5 

Resulting from the simulation exercise – among other results – extracts of all 
captured windows event logs and MITRE threat detection logs were made avail-
able to NCI Agency’s Data Science team. In total 93 million windows event log 
entries and 75 thousand MITRE threat detection log entries were provided. 

Windows events logs included: 

• Application 

• Microsoft-Windows-PowerShell/Operational 

• Microsoft-Windows-Sysmon/Operational 

• Microsoft-Windows-TerminalServices-LocalSessionManager/Operational 

• Microsoft-Windows-Windows Firewall with Advanced Security/Firewall 

• Security 

• System. 

MITRE threat detection logs indicated: 
• ATT@CK Tactics 

• ATT@CK Techniques 

• References to windows event logs. 

Information on the applied cyberattack tactics and techniques (red-team ac-
tivity) was deliberately kept behind, so results could not be optimized to better 
reflect reality. Also, no information was shared about what attacks were de-
tected by the blue team. 



Cyber Threat Prediction with Machine Learning 
 

 205 

Platform for Experimentation and Implementation 
To ingest, pre-process, experiment with various machine learning techniques 
and also reduce the implementation effort, the KNIME Analytics Platform – or 
simply KNIME 1 – was selected as the core platform. 

KNIME Analytics Platform is a free, open source workflow editor following 
the familiar drag-‘n’-drop paradigm with double-click accessible dialogue win-
dows to edit component (node) properties. KNIME implements its own work-
flow enactment orchestrated by the Java virtual machine but also supporting 
component (node) enactment in Python and R, as well as parallel enactment 
through modern Hadoop cluster technologies (including Apache Spark) and 
Cloud-based services. 

The platform provides a graphical composition framework for data prepara-
tion, model fitting, and result analysis. It relies on GUI-configurable nodes, sym-
bolizing varied data processing steps which can be arranged arbitrarily to create 
complex workflows. Through its interface KNIME significantly reduces the need 
for low-level programming, making the data mining process accessible to a 
larger group of data analysts. For illustration, Figure 1 shows an example work-
flow for a basic machine learning approach. 

 

 

Figure 1: Illustration of a workflow in KNIME. 
 

Data preprocessing 

KNIME comes with a complete solution of nodes for handling small and large 
datasets and provides a possibility of transforming raw data in more normalized 
and structured format which cover a typical data preprocessing step in data an-
alytics projects. 

Machine Learning 

KNIME is offering a flexibility of applying latest Machine Learning and Deep 
Learning frameworks such as PyTorch, TensorFlow, Keras and Deeplearning4J. 
These deep learning extensions allow user to read, create, train and execute 
machine learning and deep neural networks within KNIME. Another important 



A. Kok, I. Ilic Mestric, G. Valiyev & M. Street,  ISIJ 47, no. 2 (2020): 203-220 
 

 206 

feature provided by KNIME is the possibility to use GPU (NVIDIA CUDA) acceler-
ation which facilitates the possibility of applying machine learning models to 
large datasets as they require intense computational power and possibly being 
processed in parallel. For these reasons, when it comes to large volume da-
tasets, a GPU can help to speed up the process. 

Visualization 

For limiting the effort and convenience reasons, the results of the experimen-
tation were brought to a Microsoft Power BI dashboard. Power BI allows for 
interactive exploration of results. This tool in particular was selected before for 
its completeness of visual solutions (ships with over 20 chart types and over 200 
custom chart types available from store) and in general for its ease of use. 

Experiments and Findings for Cyber Threat Prediction 
The performed experiments using the provided CWIX Cyber Simulation log data 
were aiming to find and test an approach for two situations: 

1.known tactics and techniques that are applied in a cyber-attack 

2.unknown (new) tactics and/or techniques that are applied in a cyberattack. 

The machine learning techniques available are growing in number and time 
restrictions guided the team to search the realm of supervised deep-learning 
for the first category (known tactics and techniques). The section on “Super-
vised Machine Learning for training an ATT@CK framework Threat Prediction 
Model” provides more details. For the second category (unknown tactics and 
techniques) clustering techniques were considered, next to unsupervised learn-
ing. More details on these approaches in paragraph “Unsupervised Machine 
Learning for Anomaly Detection.” These techniques and their target problem 
are shown in Fig. 2. 

 

 

Figure 2: Machine Learning techniques explored. 
 

All approaches to be executed required the provided data sets to be prepro-
cessed. Which turned out to be a small challenge on its own given the volume 
and variety of the contents. Measures were taken. In order to reduce the re-
quired processing duration, the team used distributed computing capabilities 
on more than one occasion. On top fail-save measures were taken, saving inter-
mediate results were possible. 

Preprocessing 

Known Cyber Attack

•Supervised Deep-Learning

Unknown Cyber Attack

•Unsupervised Deep-Learning

•Clustering Algorithms



Cyber Threat Prediction with Machine Learning 
 

 207 

Starting with the windows event logs (source for features) and MITRE detection 
logs (source for labels), the aim for preprocessing was to prepare the appropri-
ate training and test sets for all machine learning techniques to be applied. Fol-
lowing the common (sub) steps in data science: 

 
Figure 3: Common steps to prepare for Machine Learning. 

 

The resulting features were aggregated into event time windows to get to a 
meaningful starting point for machine learning. The preprocessing steps are de-
scribed in more detail in paragraph “Preprocessing.” 

As reference for later results, the preprocessed MITRE threat detection logs 
were visualized to allow overlays and comparisons with machine model results. 

Since the actual red-team activity was not shared and Cyber Security (delib-
erately) did not share the planned and executed attacks, there was no model-
trained prediction directly based on that. This more accurately reflects the typ-
ical scenario for cyber incidents. 

Data Ingestion 

The team used KNIME to ingest the provided windows event logs and MITRE 
detection logs. Both data sets were shared with the team as comma-separated-
value (CSV) files, extracted from a Splunk set-up that was collecting during the 
CWIX Cyber Simulation. 

Splunk (the product) captures, indexes, and correlates real-time data in a 
searchable repository from which it can generate graphs, reports, alerts, dash-
boards, and visualizations.6 

93 million windows event log entries and 75 thousand MITRE threat detec-
tion log entries were in data sets and processed to a native KNIME table format. 
The full data sets were filtered, including only the 5-day period of the exercise. 
“Noise” from the setting up of the simulation system at the exercise was fil-
tered, resulting in almost 49 million windows event log entries to prepare for 
machine learning (reduction of 47 %). 

At this point all windows event log attributes for all entries were made avail-
able for processing steps to follow. From the MITRE threat detection log only 
the timestamp, ATT@CK tactic and ATT@CK technique were kept. 

Dimensionality Reduction 

Real-world data, such as event log collections, have a high dimensionality (at-
tributes). In order to handle such real-world data adequately, its dimensionality 
needs to be reduced. Dimensionality reduction is the transformation of high-
dimensional data into a meaningful representation of reduced dimensionality. 

 

Data Ingestion
Dimensionality 

Reduction
Feature 

Selection



A. Kok, I. Ilic Mestric, G. Valiyev & M. Street,  ISIJ 47, no. 2 (2020): 203-220 
 

 208 

𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝑑 ≪ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝐷 

Ideally, the reduced representation should have a dimensionality that corre-
sponds to the intrinsic dimensionality of the data. The intrinsic dimensionality 
of data is the minimum number of parameters needed to account for the ob-
served properties of the data.7, 8 Figure 4 shows more common techniques for 
dimensionality reduction. 

 
Figure 4: Taxonomy of dimensionality reduction techniques.8 

 
No indications or SME knowledge was provided on the dimensions with val-

uable indicators for threats, therefor they had to be discovered in a way not 
depending on Cyber Security expertise and still in a controlled manner. 

Unfortunately, time permitted only for using statistical reduction methods 
already available from KNIME, being: Low Variance, High Correlation and (High 
Variance) Masking. 

First step applied was discarding dimensions with low variation. In practice, 
zero variation tolerance was used on a bootstrap sample of 6 million (12 %) log 
events evenly picked from the full data set. 

Next correlating dimensions were discarded, leaving a single dimension per 
set of correlating dimensions. Within the 6 million log events sample all records 
must correlate to be reduced. 

As a last step dimensions with high variation (>100k unique values in 6 million 
log events sample) were masked. The masking process takes all values of a sin-
gle dimension and partitions them. For each sequential partition the absolute 
number variances is calculated. If the variances count above the applied thresh-
old, the section value is replaced with a joker-character (e.g. an asterisk ‘*’). This 
results in a highly reduced number of unique values and generalizes the data 
values. 

Dimensionality Reduction brought the dimensions of the data set down from 
226 to 147 (reduction of 35%), with high confidence that no valuable indicators 
for Cyber threats were lost. 



Cyber Threat Prediction with Machine Learning 
 

 209 

Feature Extraction and Selection 

Having reduced the dimensionality as much as feasible, feature extraction de-
livered a set of derived values: features. At this point 30.069 features. Feature 
extraction addresses one attribute at a time and creates a feature column per 
unique value. The feature column representing the attribute value is set to 1.0 
(selecting the value); all other feature columns are left 0.0 (not selected). At this 
point the earlier masking of attributes limited the resulting features severely. 

Despite the effort of dimensionality reduction, over 30 thousand features is 
still far more than desirable. Therefor the team applied a subset selection 
method for feature selection. 

Subset selection evaluates a subset of features as a group for suitability. Sub-
set selection algorithms can be broken up into wrappers, filters, and embedded 
methods:9 

• Wrappers utilize the learning machine of interest as a black box to score 
subsets of variable according to their predictive power. 

• Filters select subsets of variables as a pre-processing step, independently 
of the chosen predictor.  

• Embedded methods perform variable selection in the process of training 
and are usually specific to given learning machines. 

A for our purpose an optimized version of a wrapper was used. The wrapper 
used a small deep neural network (DNN) consisting of two hidden layers (resp. 
100 and 50 fully connected units with ReLu activation), trained using all 30.069 
features during 100 epochs to predict the 32 MITRE ATT@CK Techniques. Even 
though the predictive skills of the model were not optimal, it was expected to 
highlight the most relevant features. In a follow-up step all feature-groups (fea-
tures related to a single dimension) were tested. By running the test set through 
the model ones with the feature-group set to 0.0 and ones set to 1.0, the dis-
tance in the model results and therefor the influence of the features was meas-
ured. This led to the top 10 shown in Figure 5.  

 

  

Figure 5: Feature-group influence on DNN prediction error. 
 



A. Kok, I. Ilic Mestric, G. Valiyev & M. Street,  ISIJ 47, no. 2 (2020): 203-220 
 

 210 

For machine learning down-stream the features of the top 5 dimensions were 
selected, coming to a total of 8042 features (reduction of 73 %, coming from 
over 30 thousand features). This allowed for smaller models and faster models. 

Event Time Window Generation 

With the assumption that Cyber threats are recognized in combinations of ac-
tions – and therefor log multiple event log entries on these actions – a set of 
time windows were created from the training and test data set. Each window 
aggregating the features and labels of a 15-minute time window, shifting the 
window in 2-minute steps (giving 13 minutes overlap from one window to the 
next). 

Size of the time windows and step size from one window to the next are es-
timated to be optimal for the scenario based on Cyber SME input. Other window 
sizes and step sizes are not tested to confirm these assumptions due to time 
limitations. 

The generation coming from the 49 million windows event log entries re-
sulted in 3234 time windows, each composed of 8042 features (related to 
logged events), plus the label (related to MITRE ATT@CK framework). 

As a final step the features were normalized, getting them ready for machine 
learning. Here the normalizer was set to normalize between -0.07 and 1.02 
(“over-normalizing” if you like), which eases the training of the deep neural net-
work (DNN) by taking out the 0.0 “multipliers” out of the equation improving 
the gradients. 

Visualization of MITRE Threat Detection 

As a reference for the Machine Learning to be conducted and measuring the 
results, the MITRE threat detection logs were processed and visualized. The vis-
ualizations—and the prepared numbers they are based on—show the number 
of ATT@CK framework techniques and tactics detected on a timeline.  

The visualization allows users to check the results coming from machine mod-
els visually. This was used to have an easy indicator to check results and share 
progress. The numbers behind the visualizations allow for statistically scoring 
the machine model outcomes. 
Supervised Machine Learning for training an ATT@CK framework Threat  
Prediction Model 

In order to predict known tactics and techniques applied in a cyber-attack, su-
pervised Machine Learning (ML) was conducted. The aim was to see if ML is able 
to predict (or reproduce) the threats detected by MITRE per time window (of 
15 minutes), based on Windows Event Logs. 

In general Machine Learning approaches address problems as classification 
problem or regression problem.10 

• Classifications problems are trying to assign class labels to the records 
of a provided data set. A classification problem can be binary (assign 
class A or B), multi-class (assign one of many possible classes), or multi-
label (assign multiple classes per record). 



Cyber Threat Prediction with Machine Learning 
 

 211 

 

Figure 6: Visualization of MITRE Threat Detection (normalized) for Cyber red-blue 

team simulation. 
 
• Regression problems require the prediction of quantities. A regression can 

have real value or discrete input variables, but expect real value outputs. 

The main difference between regression and classification is that the output 
variable in regression is numerical (or continuous) while that for classification is 
categorical (or discrete).12 

Problem was recognized as a regression problem, where there are multiple 
threats happening within the same time window and to a certain extend. Com-
mon neural network architectures for regression problems are Convolutional 
Neural Network (CNN), Multi-Layer Perceptron Neural Network (MLP) and Re-
current Neural Network (RNN). Given the data set the team deemed a MLP – 
the basis form of a neural network and commonly referred to as Deep Neural 
Network (DNN) – the best suitable architecture. 

• CNNs work well with data that has a spatial relationship (e.g. images). 

• RNNs work well when predicting sequences (not the case in the prediction 
scenario at hand, but would be the case when moving up to APT-predic-
tion). 

A deep neural network (DNN) is an artificial neural network (ANN) with mul-
tiple layers between the input and output layers.18, 19 The DNN finds the correct 
mathematical manipulation to turn the input into the output, whether it be a 
linear relationship or a non-linear relationship. The network moves through the 
layers calculating the probability of each output. Complex DNN have many lay-
ers, hence the name "deep" networks.  



A. Kok, I. Ilic Mestric, G. Valiyev & M. Street,  ISIJ 47, no. 2 (2020): 203-220 
 

 212 

Attaching the regression problem, the team first trained a small DNN (con-
sisting of two hidden layers [100 units, 50 units]) during 100 epochs. The fairly 
quickly trained model allowed for getting a feeling of the problem and if the 
selected features and chosen architecture were fit for purpose. Results looked 
very promising to continue down this road. 

Assumption at this point was that many combinations of features can indi-
cate a threat, rather than a single feature. To allow the network to better coop 
with this the first hidden layer was extended to 1000 units (10 times earlier size). 
Given only five dimensions were included, adding an extra hidden layer was not 
thought to be beneficial to the accuracy. No extra layers were added; this would 
have allowed for more complex combinations of indicators to be recognized. 
The extended model was trained for 1000 epochs, which resulted in an accuracy 
of 99.7% (on the training set; see Figure 9 for full scoring, showing the Euclidian 
distance scoring matrix per threat technique) for predicting the different threats 
present in per time window. Figure 7 shows a comparison of the model’s results 
with the MITRE logging. 

 

 

Figure 7: Detail comparison Machine Learning threat prediction vs MITRE threat de-

tection (showing June 17 only; left Machine Learning model, right MITRE threat de-

tection visualization). 
The visualizations already show high resemblance, and scoring the model 

confirmed this. Using Euclidian distance per threat technique, a median dis-
tance of 0.017 (75% percentile: 0.021) was measured (0.0 distance being fully 
aligned; 1.0 opposite results). 

The model was trained and test on the same data set, because there is no/too 
little redundancy in the data set. As a result, the model is not validated, with a 
risk of having over-fitted the model. The model does show the windows event 
logs captured, and the selected features, allow for precise prediction of the 
techniques and tactic as available from the MITRE ATT@CK framework. 

Unsupervised Machine Learning for Anomaly Detection 

In order to predict if unknown (new) tactics and/or techniques are applied in 
a cyber-attack, unsupervised Machine Learning (ML) was conducted. Aim was 
to see if ML is able to predict (or reproduce) the threats detected by MITRE per 
time window (of 15 minutes), based on Windows Event Logs, with no pre-know- 



Cyber Threat Prediction with Machine Learning 
 

 213 

 

Figure 8: Scoring of Machine Learning model for threat technique prediction. 
 

ledge at training time (MITRE detected threat logs not to be used as labels while 
training the machine models). The assumption is that threats will be seen as 
anomalies. 

Two approaches for detecting anomalies were addressed and explained in 
following paragraphs: 

1. Auto-encoding 

2. Clustering with outliers 

Auto-encoding 

An auto-encoder is a type of artificial neural network used to learn efficient data 
encodings in an unsupervised manner.5, 14 The aim of an auto-encoder is to learn 
a representation (encoding) for a set of data, typically for dimensionality reduc-
tion, by training the network to ignore signal “noise”. Along with the reduction 
side, a reconstructing side is learnt, where the auto-encoder tries to generate 
from the reduced encoding a representation as close as possible to its original 
input, hence its name. Examples are the regularized auto-encoders (Sparse, De 
noising and Contractive auto-encoders), proven effective in learning represen-
tations for subsequent classification tasks.16 

The Auto-encoder approach for detecting anomalies applied the following 
steps: 

1. Select the time windows that are to be considered “normal” behaviour. 

2. Train the auto-encoder model on the “normal” behaviour time windows 
to learn how to reproduce the input. 

3. Test the auto-encoder model on all time windows, including time windows 
with potential cyber threats, and collect the output. 



A. Kok, I. Ilic Mestric, G. Valiyev & M. Street,  ISIJ 47, no. 2 (2020): 203-220 
 

 214 

Measure the distance between input and output (high distances indicate 
anomalies) 

The Auto-encoders—a specific form of a deep neural network—were com-
posed of three hidden layers. First layer for encoding, second layer a bottleneck 
and third layer for decoding. During the experiment three auto-encoder models 
were tested: 

I. A model with 100-10-100 units in the hidden layers which was trained for 
200 epochs 

II. A model with 100-50-100 units in the hidden layers which was trained for 
200 epochs 

III. A model with 1000-10-1000 units in the hidden layers which was trained 
for 1000 epochs. 

For step 1, “Normal” behaviour was taken from the time periods in between 
red team activity (read from MITRE Threat Detection visualization). Simplified 
to 4:00pm to 6:00am, excluding an end-of-day reset of the system. User behav-
iour was automatically simulated and cycled and therefor expected to be con-
stant, also during the night. 

Step 2 (training) and 3 (testing) were likely to take more time to train. In order 
to select the appropriate auto-encoder configuration, first models I (tight bot-
tleneck) and II (slight bottleneck) were trained. A tight bottleneck will generalize 
more than a slight bottleneck. Comparing the results from models I and II, more 
generalization was deemed better. The last model (III) was trained with a tight 
bottleneck for a longer time (1000 epochs).  

Step 4 (measure), was performed by applying Euclidian distance. For each 
time window the input (features) and output (predictions) were treated as a 
dimensional vector and the distance was calculated. The error on “normal” 
event time windows was used to correct the measures. The results of the final 
model are visualized in Figure 9 (yellow: model output; blue: values corrected 
for error). 

Comparing the pikes – indicating anomalies – with the MITRE reference visu-
alizations (shown here as grey bars pointing down), most threats detected by 
MITRE are also recognizable from the auto-encoder results. Note that the grey 
bars do not indicate quantity of detections. 

Clustering with outliers 

Clustering is a Machine Learning technique that involves the grouping of data 
points. Given a set of data points, we can use a clustering algorithm to classify 
each data point into a specific group. In theory, data points that are in the same 
group should have similar properties and/or features, while data points in dif-
ferent groups should have highly dissimilar properties and/or features. Cluster-
ing is a method of unsupervised learning and is a common technique for statis-
tical data analysis used in many fields.4 

 



Cyber Threat Prediction with Machine Learning 
 

 215 

 
Figure 9: Anomalies over time predicted using Machine Learning (Auto-encoder). 

 

 

Figure 10: Auto-encoder accuracy by applied error correction (optimum: 66.9% at 9.9 

error correction). 
 

 

Figure 11: Auto-encoder score (for 9.9 error correction). 
 
For anomaly detection the focus shifts to the data point that cannot be as-

signed to the main clusters. The main clusters represent “normal” behavior, 
where smaller clusters and not-assigned data points represent potential anom-
alies. The clustering algorithm most likely to find anomalies is Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN). 

DBSCAN clustering 

DBSCAN is a data clustering algorithm proposed by Martin Ester, Hans-Peter 
Kriegel, Jörg Sander and Xiaowei Xu in 1996.20 It is a density-based clustering 



A. Kok, I. Ilic Mestric, G. Valiyev & M. Street,  ISIJ 47, no. 2 (2020): 203-220 
 

 216 

non-parametric algorithm: given a set of points in some space, it groups to-
gether points that are closely packed together (points with many nearby neigh-
bors), marking as outliers points that lie alone in low-density regions (whose 
nearest neighbors are too far away). 

The clustering algorithm allows to fine-tune with two setting in particular: 

1. Epsilon (E-value): is the maximum allowed distance between two data 
point in order to belong to the same cluster. Experiment E-value range: 2.0 
to 8.0 (incl.), step size: 0.1. 

2. Minimum cluster size (M-value): is the minimum number of data points that 
can form a cluster. Single data point and smaller clusters will be treated as 
being “noise.” Experiment M-value range: 2 to 6 (incl.), step size: 1. 

DBSCAN anomaly detection 

For the experiment with DBSCAN clustering the team compared the results for 
the mentioned ranges combined, clearly showing that models settings have to 
be tuned for purpose. In order to visualize the scores were matched with the 
MITRE threat detections (labels), using an additional parameter (by the team 
named): L-value. The L-value is used to indicate the maximum number of MITRE 
threat detections in a time window that should trigger an anomaly to be pre-
dicted. For L-value the experiment used the range from 1 to 20 (incl.), step size 
of 1.  

Figure 13 shows an accuracy ranging from 19.3% up to 84.0% dependent on 
E, M and L-values applied. Resp. E=2.0, M=6, L=20 and E=8.0, M=2, L=19. The 
figure focusses on the influence of the epsilon size (E-value) setting. The larger 
the epsilon size, the more data point will belong to the same cluster (general 
clusters). Small values will cause more clusters to be formed (specialization clus-
ters). For the simulation data set a larger epsilon size, building larger general 
clusters, clearly was beneficial to gain a higher accuracy. The accuracy is the 
percentage of discreet data points predicted “correct”. The percentage includes 
– in case of the 84.0% score – 166 true positives of “correct” predicted anoma-
lies. Still 319 threats labeled by MITRE were not predicted as anomalies (and 
therefor false negatives). The team considers the likelihood that the nature of 
the simulated data set plays a part here: an unrealistically high percentage (de-
pended on L-value between 15% and 32%) of the time windows show abnormal 
activity. Supporting this theory is the missed large and wide MITRE threat peak 
showing for June 21st in the afternoon. 

Figure 14 and Figure 15 show how minimum cluster size (M-value) and MITRE 
detections threshold (L-value) influence the accuracy, given the data set at 
hand. 

The minimum cluster size proved to be less influential to the overall accuracy 
of the model. All values in the used range (2 to 6 incl.) allow to reach accuracies 
above 80.8%. Potentially a larger range would show its influence (not tested). 

As already mentioned, the best accuracy seen in the experiment reaches up 
to 84.0%, predicting anomalies using the MITRE threat detection labels. Inter-
esting to see is that increasing the L-value allows for both the best and worst 



Cyber Threat Prediction with Machine Learning 
 

 217 

accuracy. More importantly it shows that the influence of the L-value wears out, 
already allowing accuracy of 75.0% at L=5 and 80.0% at L=10. 

 

 

Figure 12: Figure 10: Auto-encoder accuracy by applied error correction (optimum: 

66.9% at 9.9 error correction). 
 

 

Figure 13: Accuracy ranges for DBSCAN epsilon size, by cluster size. 
 



A. Kok, I. Ilic Mestric, G. Valiyev & M. Street,  ISIJ 47, no. 2 (2020): 203-220 
 

 218 

 

Figure 14: Accuracy spread by DBSCAN minimal cluster size. 
 
 

 

Figure 15: Accuracy spread by applied MITRE detections threshold. 
 

Recommendations 
The experiments executed clearly show that the event logs captured contain 
the information that allows for predicting of threat techniques with a high pre-
cision. They show promising results for the machine learning techniques. 

The data sets were to a high extent artificial though, and therefor limited the 
possibility to assess how results relate to real-life situations. The results look 
promising and could even improve when applied to “real” situations (e.g. anom-
aly detection using clustering with outliers). 



Cyber Threat Prediction with Machine Learning 
 

 219 

The work did not explore the possibilities of applying prediction techniques 
in operational systems, or linking results to operational challenges. Further 
work could bring valuable information and tools for the Cyber Security Centre 
and Cyber community in general and this will be explored in further work which 
is planned. 

From this work the Data Science team recommends to: 

• Follow up with developing a model for Advanced Persistent Threat predic-
tion, on top of technique prediction (and their sequence) 

• Analyse and determine the most influential logs and log entry types, allow-
ing optimizations on the networks to best capture (potential) threats and 
attacks 

• Repeat and improve models using genuine historic network data sets (also 
allowing to run MITRE detection) and records of detected attacks 

• Research options for operationalizing prediction models as (near) real-
time cyber threat alert support 

• (from a scientific perspective) Look at alternative methods for dimension-
ality reduction and feature selection, improving the results potential. 

Acknowledgment 

The authors wish to thank Alberto Domingo and his colleagues at Allied Com-
mand Transformation for their support in applying Machine Learning tech-
niques to the Cyber Exercise data set. 

This work would not have been possible without the support of colleagues 
(past and present) across the NCI Agency who provided the environment and 
collected the data set used for post-exercise analysis, among many dedicated 
colleagues, Manisha Parmar deserves a special mention. 

References 
1 Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kötter, 

Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel, and Bernd Wiswedel, 
“KNIME: The Konstanz Information Miner,” in Studies in Classification, Data Analysis, 
and Knowledge Organization (Springer, 2007), 319-326. 

2 “Take on Data Science and Machine Learning Tools,” Gartner, 2018, 
https://www.gartner.com/reviews/market/data-science-machine-learning-plat-
forms. 

3 “From Words to Wisdom,” KNIME Press, 2018. 
4 George Seif, “The 5 Clustering Algorithms Data Scientists Need to Know,” 2018. 
5 The MITRE Corporation, https://attack.mitre.org. 
6 “Splunk,” Wikipedia, 2019, https://en.wikipedia.org/wiki/Splunk. 
7 Keinosuke Fukunaga, Introduction to Statistical Pattern Recognition (San Diego, CA: 

Academic Press Professional, 1990). 
8 Laurens van der Maaten, Eric Postma, and Jaap van den Herik, “Dimensionality Re-

duction: A Comparative Review,” Tilburg University, TiCC TR 2009–005, 2009. 



A. Kok, I. Ilic Mestric, G. Valiyev & M. Street,  ISIJ 47, no. 2 (2020): 203-220 
 

 220 

9 Isabelle Guyon and André Elisseeff, “An Introduction to Variable and Feature Selec-
tion,” Journal of Machine Learning Research 3 (2003): 1157-1182. 

10 Jason Brownlee, “Gentle Introduction to Models for Sequence Prediction with 
RNNs,” Machine Learning Mastery, July, 17, 2017, https://machinelearningmas-
tery.com/models-sequence-prediction-recurrent-neural-networks/. 

11 Fjodor van Veen, “Neural Networks,” 2016, https://asimovintitute.org. 
12 Michael J. Garbade, “Regression Versus Classification Machine Learning: What’s the 

Difference?” 2018. 
13 Cheng-Yuan Liou, Jau-Chi Huang, and Wen-Chie Yang, “Modeling Word Perception 

Using the Elman Network,” Neurocomputing 71, no. 16-18 (2008): 3150-3157, 
https://doi.org/10.1016/j.neucom.2008.04.030. 

14 Cheng-Yuan Liou, Wei-Chen Cheng, Jiun-Wei Liou, and Daw-Ran Liou, "Autoencoder 
for Words," Neurocomputing 139, no. 2 (September 2014): 84-96, https://doi.org/ 
10.1016/j.neucom.2013.09.055. 

15 Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning (MIT Press, 
2016). 

16 Pascal Vincent and Hugom Larochelle, “Stacked Denoising Autoencoders: Learning 
Useful Representations in a Deep Network with a Local Denoising Criterion,” Journal 
of Machine Learning Research 11 (2010): 3371–3408. 

17 Diederik P. Kingma and Max Welling, “An Introduction to Variational Autoencoders,” 
arXiv:1906.02691 (2019). 

18 Yoshua Bengio, “Learning Deep Architectures for AI,” Foundations and Trends® in 
Machine Learning 2, no. 1 (2009): 1-127, https://doi.org/10.1561/2200000006. 

19 Juergen Schmidhuber, “Deep Learning in Neural Networks: An Overview,” Neural 
Networks 61 (2015): 85-117, https://doi.org/10.1016/j.neunet.2014.09.003. 

20 Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, Evangelos Simoudis, 
Jiawei Han, and Usama Fayyad (eds.), “A density-based algorithm for discovering 
clusters in large spatial databases with noise,” Proceedings of the Second Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD-96) (AAAI Press, 
1996). 


	Data Ingestion
	Dimensionality Reduction
	Feature Extraction and Selection
	Event Time Window Generation
	Auto-encoding
	Clustering with outliers
	Recommendations
	Acknowledgment
	References

