
 

I. Blagoev   
vol. 47, no. 1 (2020): 62-76 

https://doi.org/10.11610/isij.4704 

Published since 1998 ISSN 0861-5160 (print), ISSN 1314-2119 (online) 
Research Article 

 

 E-mail: i.blagoev@iit.bas.bg 

 

Neglected Cybersecurity Risks in  
the Public Internet Hosting Service Providers 

Ivan Blagoev  () 

Institute of Information and Communication Technologies, Bulgarian Academy of 
Sciences, Sofia, Bulgaria, http://iict.bas.bg/en 

A B S T R A C T : 

The provision of cybersecurity is of basic importance for every effective infor-
mation system. It is possible to provide most rich information services, but only 
one neglected cybersecurity risk may compromise the system and all services it 
provides. Therefore, meeting the cybersecurity requirements is a prerequisite 
for the safety and security of IT infrastructures, digital resources, and the pro-
tection of private data. In that respect, the themes of cryptography and suffi-
ciently robust random number generation are of particular interest. This article 
looks for the “golden ratio” between the provision of mass services and the ef-
forts to meet cybersecurity requirements. It suggests a method and discusses 
the possibilities to increase the cryptographic protection in information sys-
tems. 

A R T I C L E  I N F O : 

RECEIVED: 03 JUN 2020 

REVISED:  31 AUG 2020 

ONLINE:  21 SEP 2020 

K E Y W O R D S : 

cybersecurity, cryptography, RNG, digitization,  
cryptography protocols, web services 
 

  Creative Commons BY-NC 4.0 

 

At the heart of any encryption system is an algorithm and a random number 
generator. Therefore, it can be considered that no matter how complex crypto-
graphic algorithms we are using, they are as strong as strong is the random 
number generator, which is the basis of the system 

In the cryptography systems have a two basis types of random numbers gen-
erators: 

• Random Number Generator (RNG): Apply at any given time to the RNG to 
generate values that must be unique and should not be repeated on 

https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode


Neglected Cybersecurity risks in the public Internet hosting service providers              
 

 63 

subsequent calls to the RNG.1 The numbers obtained with this type of RNG 
are applied to operations that require unique / unobservable numerical val-
ues generated over time. An example of such a situation is generating a 
cryptographic key for encoding / decoding data, initializing vectors, initial 
numerical values for controlled RNG, etc. 

• Pseudo Random Number Generator (PRNG): this generator uses the initial 
SEED number.2 All randomly generated consecutive numbers come from 
the algorithm and this initial SEED value. All produced values are in order 
of their sequence and it's are re-reproducible if initial SEED is the same. The 
only really unexpected and secret value that should be as unpredictable as 
possible is the SEED number, which is the root of the base of this numerical 
sequence and the basis for generating the entire numerical array. This tech-
nology is most commonly used for often for One Time Password (OTP) au-
thentication and the generation of cryptographic keys derived from the 
Master Root Key, which is used to compile wallets in Block Chain - distrib-
uted ledger technology, HMAC authentication, etc. 

But how predictable and vulnerable is a given random number generator? 
This is a question that has excited the community since time immemorial. 

Even if we use a good mix of cryptographic algorithms, which is designed to 
protect the operation of an information system. If our RNG is not good, the 
whole cryptographic solution may be vulnerable.3 The encryption algorithms 
themselves are reproducible, and the simplest way is for the criminal person to 
try predicted values from random numbers coming from our RNG. He can make 
a RNG values are fed as input to the cryptographic algorithms and compare the 
output to the intercepted encrypted stream. If this attacker can predict cor-
rectly the RNG value, the security of the entire cryptographic solution will fail.5 
Conventional brute force attacks over cryptographic keys requires a lot of time 
and calculation resources. Therefore, brute force attacks directed against relia-
ble modern cryptographic algorithms are considered ineffective. Entropy and 
predictability detection attacks in a bad random number generator require 
much less time and resources to make these attacks possible. We, as a victim, 
can feel deceptively secure because we believe that the system relies on a good 
combination of modern cryptographic algorithms without suspecting our RNG 
weakness.3 

The effectiveness of RNG is measured by the degree of entropy for the gen-
eration of random numbers. For example, we take a binary bit and it can have 
a value of 0 or 1. If we have no idea what the value is, we have entropy 1 bit (i.e. 
coin throwing with 2 possible outcomes). If the generated value is always 1 and 
we know this, we have entropy 0 bits. The predictability is opposed to unpre-
dictability. If the binary bit 1 is falling in 99 % of all cases, entropy may only be 
a fraction over 0 bits. In the area of cryptography, the more unpredictable bits 
we would obtain so much the better. 

In other areas, such as statistics, signal processing, econometrics, and math-
ematical finance, to find cycle times and predict future values, time series are 



I. Blagoev, ISIJ 47, no. 1 (2020): 62-76 
 

 64 

used.5 Since a time series is a sequence of data points typically measured at 
successive time points located at unified time intervals, it is also possible to ap-
ply this approach to the quality analysis of a random number generation system. 
Regardless of which random number generator is more often used (uncon-
trolled or controlled), the overall success of the system is based on the quality 
of the random numbers produced. 

The complexity of analysing a given RNG is a function of the quality of its en-
tropy, such as seasonality and collision tendencies, or the creation of repetitive 
patterns. These are the moments when the RNG will generate a value that is 
cyclical or a range of values that lead to a repeat of an already output result or 
the generation of a new but expected value. 

In the end, the normal development of humanity leads us to more and more 
mass digitalization. More and more activities and processes are much more pro-
ductive and effectively managed through technology. These processes of digi-
talization even accelerated and proved their importance when the world was 
hit by the global COVID-19 pandemic. Processes that would take years had to 
happen in months and society had look for a new way of life that is much more 
related to technology. At first glance looks like the world was prepared for such 
a technological challenge. To some extent, this is the case, but the number of 
Cybercrime has increased and the encroachment of personal data, money and 
information loss, extortion due to information loss has also escalated to unprec-
edented levels. All of this is a strong indicator that while technology and com-
puting infrastructure have met the challenge, from the side of cybersecurity we 
are not ready. The aim of this study is to focus on cybersecurity issues in public 
services, which are easily accessible and account for a large share of mass con-
sumption. 

For the needs of our current research we used web hosting services of one 
established provider of this sector. Our web application service has been in-
stalled over the rented hosting. The Web certificate has been added and SSL 
access has been activated on standard port 443. The control over the service 
does not allow to change the cryptography ciphers configuration from which is 
depends all encryption which is connected with connectivity protocol TLS.6 But 
let's check active TLS versions and cryptography ciphers which is configured 
from our service provider: 

1. Protocol version: TLSv1.0: 
- cryptography algorithm ciphers: 
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,  (*) – А->B (till February 2020) 

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (*) – А security class → B se-
curity class (till February 2020) 

- compression: not supported 

2. Protocol version: TLSv1.1: 
- cryptography algorithm ciphers: 
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (*) – А security class → B se-

curity class (till February 2020) 



Neglected Cybersecurity risks in the public Internet hosting service providers              
 

 65 

 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (*) – А security class → B se-
curity class (till February 2020) 

- compression: not supported 

3. Protocol version: TLSv1.2: 
- cryptography algorithm ciphers: 
 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (*) – A security class 
 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (*) – A security class 
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (*) – A security class 
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (*) – A security class 
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (*) – A security class 
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (*) - A security class 
- compression: not supported 

Elliptic curves for Diffie Hellman maintained by the server in a preferential 
order - secp256r1, secp521r1, brainpoolP512r1, brainpoolP384r1, secp384r1, 
brainpoolP256r1, secp256k1, sect571r1, sect571k1, sect409k1, sect409r1, 
sect283k1, sect283r1 

From what has been obtained so far, it can be said that the cryptographic 
protocols that the server offers: TLSv1.0 and TLSv1.1 should not be supported 
and offered at all, because they have long-known weaknesses and are obsolete. 
From the point of view of cyber security, the ability to establish a connection 
between a client server through them is a significant weakness. 

The protocol: TLSv1.2 is still in use, but in cryptographic algorithms order 
have weak and reliable algorithms.6 For establish tunnelling connectivity, the 
algorithm list provided by this protocol should be reduced. Therefore, the list of 
offered algorithms ciphers should be reduced to the following type, which is 
currently still up to date: 

• TLSv1.2 and identifiers of supported current cryptographic ciphers algo-
rithms: 

 TLS_ECDHE_RSA(ECDSA)_WITH_AES_256_GCM_SHA384 (secp521r1, 
secp384r1) – A security class 

 TLS_ECDHE_RSA(ECDSA)_WITH_AES_128_GCM_SHA256 (secp521r1, 
secp384r1) – A security class 

 TLS_ECDHE_RSA(ECDSA)_WITH_AES_256_CBC_SHA384 (secp521r1, 
secp384r1) – A security class 

 TLS_ECDHE_RSA(ECDSA)_WITH_AES_128_CBC_SHA256 (secp521r1, 
secp384r1) – A security class 

• for asymmetric cryptography with RSA, the key must not be smaller than 
RSA4096 (ECDSA384+) 

• compression: not supported (enabling compression also opens up vulner-
abilities in cryptography) 

Another significant drawback is that TLSv1.3 is not supported, this is the most 
secure up-to-date protocol for the SSL tunnelling connectivity at the moment. 
In this security communication protocol, all vulnerable cryptographic ciphers 



I. Blagoev, ISIJ 47, no. 1 (2020): 62-76 
 

 66 

and compromised cryptographic algorithms is not available. Also have some 
very fundamentally changes in the way of establishing connectivity, which sig-
nificantly increase the cyber protection of clients and the server. Furthermore, 
when users using client certificate authentication, the private information 
about users is hidden from the network spies. In previous versions of the TLS 
protocol was possible for the eavesdropper to collect information about the us-
ers which authenticated self with certificates front the server. 

As already mentioned, all cryptography protection is strong how strong is a 
random number generator in it base. But let's check what RNG entropy which 
provides us this service to covering all cryptography protections considered so 
far. On the first our service is shared hosting. The here specific is that platforms 
of this type shares all hardware resource between large number of users and 
their web service applications. We do not know if this shared hardware has a 
true RNG. But if the True RNG exists on the server and a lot of users trying to 
use this shared RNG through their web applications at the same time, then the 
RNG entropy also go to collapse.4 Then all RNG entropy will be compromised 
but it will stay hidden about the clients of shared hosting services, which will 
continue to work as if everything is normal. This will be a perfect moment for 
the any hacker attacks over cryptography protection. They are also can be used 
True RNG's that are very powerful and is designed to be a very fast and with rich 
entropy but it's a extra HWRNG security modules and not exists in the standard 
server configuration.2 But let's actually check what is of our service status: 

• IP address; 

• TCP ports; 

• Web service; 

• cPanel service; 

• DNS administration panel. 

In order to protect when transmitting data over HTTP, the channel between 
the end client (usually the web browser) and the server is secured by a TLS tun-
nel, which at the packet level envelops the data transmitted in its clear format. 
The TLS protocol consists of 2 phases – handshakes and establishing a channel 
with a session key. The level of information security is determined by the agreed 
set of cryptographic algorithms, key lengths and generated random numbers, 
which are exchanged between the server and the client in the handshake phase 
(Diagram 1): 

The unpredictability in obtaining random numbers from the system signifi-
cantly affects the initial results of cryptographic operations. The TLS session key 
is formed after transformations with random numbers generated by the server 
and the client. Because the client does not always have a reliable method for 
obtaining real random numbers, then this task is implicitly transferred from the 
server side. To study the degree of unpredictability in the generation of random 
numbers by the server responsible for the site. On the follows shows Server 
Hello handshake and server random number: 



Neglected Cybersecurity risks in the public Internet hosting service providers              
 

 67 

 

Diagram 1: TLSv1.2 handshake diagram. 

 
Version: 3.3 (TLS/1.2) 
SessionID: 23 6C F0 EA 52 FA 7A E9 40 35 AA 23 17 55 1E 24 6C 9D C8 81 59 
F5 CF 92 30 D2 11 1D 12 F9 2A 33 
Random:  95 C6 63 18 AA 32 44 47 28 00 4B 94 2D AA F9 3B 12 9D 69 
54 4B 45 1A B1 1E CA 4D DE B0 A3 86 5F 
Cipher:  TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 [0xC02F] 
CompressionSuite: NO_COMPRESSION [0x00] 
Extensions: 
  server_name empty 
  renegotiation_info 00 
  ec_point_formats uncompressed [0x0], ansiX962_com-
pressed_prime [0x1], ansiX962_compressed_char2 [0x2] 
  ALPN  http/1.1 

For this purpose, it was necessary to extract from the server an array of ran-
dom numbers (which is showed above), which comes from a source responsible 
for the operation of cryptography. The ways to do that are the following: 

1. writing a program code to be installed on the provided web space and 
executed by the web client. The received random numbers can be saved 
in a file or sent directly via stream to the client. 



I. Blagoev, ISIJ 47, no. 1 (2020): 62-76 
 

 68 

2. Even if you have no control over the hosting, it can be done as client when 
making web requests to the hosting service. In our case using a Python 
computer program that establishes TLS connections like a regular web cli-
ent. In the Server Hello phase and the TLS handshake phase, data from 
the random number generator is retrieved. The received data is saved in 
a file. When this operation is repeated in the loop, the larger random 
number generator data will be collected. However, a certain delay must 
be provided here so as not to overload the server with an excessive num-
ber of connections and to interfere with normal operation. Therefore, this 
approach for the same amount of data would take longer. 

Diagram 2 visually describes this process. 

Following the above methods is collected a binary array that is written in a 
file in the form of data. These random data were subjected to high-intensity 
computational analysis using specialized open source software called Dieharder 
and authored by Robert G. Brown of the Duke University Physics Department.7  
The results of the analysis are in Appendix 1. 

The following is a description of the mathematical analysis applied to deter-
mine the quality of the random numbers array: 

Birthday spacings: Choose m birthdays in a year of n days. List the spacings 
between the birthdays. If j is the number of values that occur more than once 
in that list, then j is asymptotically Poisson distributed with mean m3 ÷ (4n). 
Experience shows n must be quite large, say n ≥ 218, for comparing the results 
to the Poisson distribution with that mean. This test uses n = 224 and m = 29, 
so that the underlying distribution for j is taken to be Poisson with λ = 227 ÷ 226 
= 2. A sample of 500 js is taken, and a chi-square goodness of fit test provides a 
p value. The first test uses bits 1–24 (counting from the left) from integers in the 
specified file. Then the file is closed and reopened. Next, bits 2–25 are used to 
provide birthdays, then 3–26 and so on to bits 9–32. Each set of bits provides a 
p-value, and the nine p-values provide a sample for a KSTEST;7 

The overlapping 5-permutation test: This is the OPERM5 test. It looks at a se-
quence of one million 32-bit random integers. Each set of five consecutive inte-
gers can be in one of 120 states, for the 5! possible orderings of five numbers. 
Thus the 5th, 6th, 7th, ... numbers each provide a state. As many thousands of 
state transitions are observed, cumulative counts are made of the number of 
occurrences of each state. Then the quadratic form in the weak inverse of the 
120×120 covariance matrix yields a test equivalent to the likelihood ratio test 
that the 120 cell counts came from the specified (asymptotically) normal distri-
bution with the specified 120×120 covariance matrix (with rank 99). This version 
uses 1000000 integers, twice. This test may have unresolved bugs resulting in 
consistently poor p-values;7 

Ranks of matrices: This is the binary rank test for 32x32 matrices. A random 
32x32 binary matrix is formed, each row a 32-bit random integer.  The rank is 
determined. That rank can be from 0 to 32, ranks less than 29 are rare, and their 
counts are pooled with those for rank 29.  Ranks are found for 40,000 such  



Neglected Cybersecurity risks in the public Internet hosting service providers              
 

 69 

Diagram 2. Random number generation.  
 
 

random matrices and a chi-square test is performed on counts for ranks 32, 31, 
30 and <=29. 

As always, the test is repeated and a KS test applied to the resulting p-values 
to verify that they are approximately uniform;7 

Monkey tests: Treat sequences of some number of bits as "words". Count the 
overlapping words in a stream. The number of "words" that do not appear 
should follow a known distribution. The name is based on the infinite monkey 
theorem;7 

Count the 1s: Count the 1 bits in each of either successive or chosen bytes. 
Convert the counts to "letters", and count the occurrences of five-letter 
"words;7 

Minimum distance test: Randomly place 8000 points in a 10000×10000 
square, then find the minimum distance between the pairs. The square of this 
distance should be exponentially distributed with a certain mean;7 

Random spheres test: Randomly choose 4000 points in a cube of edge 1000. 
Center a sphere on each point, whose radius is the minimum distance to 



I. Blagoev, ISIJ 47, no. 1 (2020): 62-76 
 

 70 

another point. The smallest sphere's volume should be exponentially distrib-
uted with a certain mean;7 

The squeeze test: Multiply 2³¹ by random floats on (0,1) until you reach 1. 
Repeat this 100000 times. The number of floats needed to reach 1 should follow 
a certain distribution;7 

Overlapping sums test: Generate a long sequence of random floats on (0,1). 
Add sequences of 100 consecutive floats. The sums should be normally distrib-
uted with characteristic mean and variance;7 

Runs test: Generate a long sequence of random floats on (0,1). Count ascend-
ing and descending runs. The counts should follow a certain distribution;7 

The craps test: Play 200000 games of craps, counting the wins and the num-
ber of throws per game. Each count should follow a certain distribution;7 

In the above (and attached description) final result, the simulation of 114 
tests and various cryptographic operations. The quality of the values applied in 
the cryptography by the hosting server is below the levels of reliable crypto-
graphic and Cyber security of FIPS-140 and other world laboratories: 

Summary of the random numbers simulation test data: 

• Only 25 have passed successfully; 

• Failed, which have compromised/predictable value and therefore detecta-
ble cryptography 76; 

• Vulnerable, where cryptography can be revealed with relatively good com-
puter hardware are 13; 

In the case of a breaking of cryptographic security, different types of hacker 
attacks of can be successfully implemented. Some of the more well-known of 
this type are, such as substituting content to mislead a user to mislead the user 
into certain actions, fake news, leaking personal data, server resources en-
croachment and etc.4 

Technologically, public hosting services have major fundamental shortcom-
ings. But they are extremely affordable, easy to configure, and very cheap. Not 
should be neglected the benefits of them. However, from the analysis of the 
research results, it can be concluded that it is not desirable to use them for crit-
ical systems that's need from reliable cyber security protection. Web services 
and portals which is critical and processing critical data should be hosted on a 
private hosting or virtual private server (VPS). 

In this case we can control available server resources and the corresponding 
level of cyber protection can be configured. In addition, the same server re-
sources will not be shared with other Web applications that can consume hard-
ware resources and the entropy of random numbers. This can lead to the loss 
of critical resources and major vulnerabilities in the cyber security to be open. 



Neglected Cybersecurity risks in the public Internet hosting service providers              
 

 71 

Conclusions 

The research of the represented services and their level of cybersecurity and 
also growing technological needs for more digitalization in all social and eco-
nomic activities, it can be concluded that the existing technological infrastruc-
ture can meet today's challenges of more and more computer power. In terms 
of Cyber security, current IT services are still lagging behind. Increasing the suc-
cess rate of Cybercrime would lead to a loss of consumer confidence and a halt 
to scientific and technological progress. This will lead to a significant slowdown 
and even hibernation in the development of many other areas such as econ-
omy, security, technology and others. Therefore, it can be said that it is abso-
lutely necessary to make efforts to increasing the Cyber resilience in all direc-
tions. Improving the quality of Cyber protection of all technological activities 
and services, as well as increasing the level of Cyber hygiene of users. 

Acknowledgment  

This paper is supported by the National Research Program ICT in Science, Edu-
cation and Security and the budget project of the IICT in digital transformation. 
 
Appendix 1. Neglected Cybersecurity risks in the public  
Internet hosting service providers 
 
Dieharder RNG analysis results: 
 
rng_name    |           filename             |rands/second| 
 file_input_raw|                   sh-random.bin|  6.02e+07  | 
#===============================================================
==============# 
        test_name   |ntup| tsamples |psamples|  p-value |Assessment 
#===============================================================
==============# 
# The file file_input_raw was rewound 52 times 
   diehard_birthdays|   0|       100|     100|0.38951753|  PASSED   
# The file file_input_raw was rewound 434 times 
      diehard_operm5|   0|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 922 times 
  diehard_rank_32x32|   0|     40000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 1151 times 
    diehard_rank_6x8|   0|    100000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 1251 times 
   diehard_bitstream|   0|   2097152|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 2051 times 
        diehard_opso|   0|   2097152|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 2584 times 
        diehard_oqso|   0|   2097152|     100|0.00000000|  FAILED   



I. Blagoev, ISIJ 47, no. 1 (2020): 62-76 
 

 72 

# The file file_input_raw was rewound 2834 times 
         diehard_dna|   0|   2097152|     100|0.00020081|   WEAK    
# The file file_input_raw was rewound 2859 times 
diehard_count_1s_str|   0|    256000|     100|0.01953386|  PASSED   
# The file file_input_raw was rewound 3347 times 
diehard_count_1s_byt|   0|    256000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 3356 times 
 diehard_parking_lot|   0|     12000|     100|0.33358085|  PASSED   
# The file file_input_raw was rewound 3362 times 
    diehard_2dsphere|   2|      8000|     100|0.03334174|  PASSED   
# The file file_input_raw was rewound 3367 times 
    diehard_3dsphere|   3|      4000|     100|0.92330162|  PASSED   
# The file file_input_raw was rewound 4246 times 
     diehard_squeeze|   0|    100000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 4246 times 
        diehard_sums|   0|       100|     100|0.14880589|  PASSED   
# The file file_input_raw was rewound 4284 times 
        diehard_runs|   0|    100000|     100|0.00000004|  FAILED   
        diehard_runs|   0|    100000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 4797 times 
       diehard_craps|   0|    200000|     100|0.00000000|  FAILED   
       diehard_craps|   0|    200000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 12427 times 
 marsaglia_tsang_gcd|   0|  10000000|     100|0.00000000|  FAILED   
 marsaglia_tsang_gcd|   0|  10000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 12465 times 
         sts_monobit|   1|    100000|     100|0.00000222|   WEAK    
# The file file_input_raw was rewound 12503 times 
            sts_runs|   2|    100000|     100|0.03544040|  PASSED   
# The file file_input_raw was rewound 12541 times 
          sts_serial|   1|    100000|     100|0.00000278|   WEAK    
          sts_serial|   2|    100000|     100|0.00000062|  FAILED   
          sts_serial|   3|    100000|     100|0.00198630|   WEAK    
          sts_serial|   3|    100000|     100|0.24256527|  PASSED   
          sts_serial|   4|    100000|     100|0.00001279|   WEAK    
          sts_serial|   4|    100000|     100|0.00000000|  FAILED   
          sts_serial|   5|    100000|     100|0.14830043|  PASSED   
          sts_serial|   5|    100000|     100|0.00006248|   WEAK    
          sts_serial|   6|    100000|     100|0.01594394|  PASSED   
          sts_serial|   6|    100000|     100|0.58120558|  PASSED   
          sts_serial|   7|    100000|     100|0.00001243|   WEAK    
          sts_serial|   7|    100000|     100|0.00650289|  PASSED   
          sts_serial|   8|    100000|     100|0.00000000|  FAILED   
          sts_serial|   8|    100000|     100|0.00000000|  FAILED   
          sts_serial|   9|    100000|     100|0.00000000|  FAILED   



Neglected Cybersecurity risks in the public Internet hosting service providers              
 

 73 

          sts_serial|   9|    100000|     100|0.14200950|  PASSED   
          sts_serial|  10|    100000|     100|0.00000000|  FAILED   
          sts_serial|  10|    100000|     100|0.00003391|   WEAK    
          sts_serial|  11|    100000|     100|0.29281609|  PASSED   
          sts_serial|  11|    100000|     100|0.00000000|  FAILED   
          sts_serial|  12|    100000|     100|0.10890305|  PASSED   
          sts_serial|  12|    100000|     100|0.04145417|  PASSED   
          sts_serial|  13|    100000|     100|0.00000000|  FAILED   
          sts_serial|  13|    100000|     100|0.00000000|  FAILED   
          sts_serial|  14|    100000|     100|0.00000037|  FAILED   
          sts_serial|  14|    100000|     100|0.51404682|  PASSED   
          sts_serial|  15|    100000|     100|0.32460847|  PASSED   
          sts_serial|  15|    100000|     100|0.00000000|  FAILED   
          sts_serial|  16|    100000|     100|0.00651735|  PASSED   
          sts_serial|  16|    100000|     100|0.00115580|   WEAK    
# The file file_input_raw was rewound 12618 times 
         rgb_bitdist|   1|    100000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 12770 times 
         rgb_bitdist|   2|    100000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 12999 times 
         rgb_bitdist|   3|    100000|     100|0.03240048|  PASSED   
# The file file_input_raw was rewound 13304 times 
         rgb_bitdist|   4|    100000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 13686 times 
         rgb_bitdist|   5|    100000|     100|0.88959066|  PASSED   
# The file file_input_raw was rewound 14143 times 
         rgb_bitdist|   6|    100000|     100|0.00000006|  FAILED   
# The file file_input_raw was rewound 14677 times 
         rgb_bitdist|   7|    100000|     100|0.07126523|  PASSED   
# The file file_input_raw was rewound 15288 times 
         rgb_bitdist|   8|    100000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 15974 times 
         rgb_bitdist|   9|    100000|     100|0.32917367|  PASSED   
# The file file_input_raw was rewound 16737 times 
         rgb_bitdist|  10|    100000|     100|0.00050227|   WEAK    
# The file file_input_raw was rewound 17577 times 
         rgb_bitdist|  11|    100000|     100|0.15629093|  PASSED   
# The file file_input_raw was rewound 18492 times 
         rgb_bitdist|  12|    100000|     100|0.00001785|   WEAK    
# The file file_input_raw was rewound 18568 times 
rgb_minimum_distance|   2|     10000|    1000|0.00000012|  FAILED   
# The file file_input_raw was rewound 18683 times 
rgb_minimum_distance|   3|     10000|    1000|0.00000022|  FAILED   
# The file file_input_raw was rewound 18836 times 
rgb_minimum_distance|   4|     10000|    1000|0.00000000|  FAILED   



I. Blagoev, ISIJ 47, no. 1 (2020): 62-76 
 

 74 

# The file file_input_raw was rewound 19026 times 
rgb_minimum_distance|   5|     10000|    1000|0.00206076|   WEAK    
# The file file_input_raw was rewound 19103 times 
    rgb_permutations|   2|    100000|     100|0.00012861|   WEAK    
# The file file_input_raw was rewound 19217 times 
    rgb_permutations|   3|    100000|     100|0.00000003|  FAILED   
# The file file_input_raw was rewound 19370 times 
    rgb_permutations|   4|    100000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 19560 times 
    rgb_permutations|   5|    100000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 19942 times 
      rgb_lagged_sum|   0|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 20705 times 
      rgb_lagged_sum|   1|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 21849 times 
      rgb_lagged_sum|   2|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 23375 times 
      rgb_lagged_sum|   3|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 25282 times 
      rgb_lagged_sum|   4|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 27571 times 
      rgb_lagged_sum|   5|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 30241 times 
      rgb_lagged_sum|   6|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 33293 times 
      rgb_lagged_sum|   7|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 36726 times 
      rgb_lagged_sum|   8|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 40541 times 
      rgb_lagged_sum|   9|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 44737 times 
      rgb_lagged_sum|  10|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 49315 times 
      rgb_lagged_sum|  11|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 54274 times 
      rgb_lagged_sum|  12|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 59615 times 
      rgb_lagged_sum|  13|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 65337 times 
      rgb_lagged_sum|  14|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 71440 times 
      rgb_lagged_sum|  15|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 77925 times 
      rgb_lagged_sum|  16|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 84792 times 



Neglected Cybersecurity risks in the public Internet hosting service providers              
 

 75 

      rgb_lagged_sum|  17|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 92040 times 
      rgb_lagged_sum|  18|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 99669 times 
      rgb_lagged_sum|  19|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 107680 times 
      rgb_lagged_sum|  20|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 116072 times 
      rgb_lagged_sum|  21|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 124846 times 
      rgb_lagged_sum|  22|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 134001 times 
      rgb_lagged_sum|  23|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 143538 times 
      rgb_lagged_sum|  24|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 153456 times 
      rgb_lagged_sum|  25|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 163756 times 
      rgb_lagged_sum|  26|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 174437 times 
      rgb_lagged_sum|  27|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 185500 times 
      rgb_lagged_sum|  28|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 196944 times 
      rgb_lagged_sum|  29|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 208769 times 
      rgb_lagged_sum|  30|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 220976 times 
      rgb_lagged_sum|  31|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 233565 times 
      rgb_lagged_sum|  32|   1000000|     100|0.00000000|  FAILED   
# The file file_input_raw was rewound 233603 times 
     rgb_kstest_test|   0|     10000|    1000|0.02580373|  PASSED   
# The file file_input_raw was rewound 234189 times 
     dab_bytedistrib|   0|  51200000|       1|0.00000000|  FAILED   
# The file file_input_raw was rewound 234238 times 
             dab_dct| 256|     50000|       1|0.00000000|  FAILED   
Preparing to run test 207.  ntuple = 0 
# The file file_input_raw was rewound 234669 times 
        dab_filltree|  32|  15000000|       1|0.00000000|  FAILED   
        dab_filltree|  32|  15000000|       1|0.00000000|  FAILED   
Preparing to run test 208.  ntuple = 0 
# The file file_input_raw was rewound 234781 times 
       dab_filltree2|   0|   5000000|       1|0.00000000|  FAILED   
       dab_filltree2|   1|   5000000|       1|0.00000000|  FAILED   



I. Blagoev, ISIJ 47, no. 1 (2020): 62-76 
 

 76 

Preparing to run test 209.  ntuple = 0 
# The file file_input_raw was rewound 235029 times 
        dab_monobit2|  12|  65000000|       1|1.00000000|  FAILED 
 
 

References 
1. Todor Balabanov, Iliyan Zankinski, and Bozhidar Shumanov, “Slot Machines RTP Op-

timization with Generic Algorithms,” in: Numerical Methods and Applications, LNCS, 
vol. 9374 (Switzerland: Springer, 2015), 210-217. 

2. Random Number Service, https://www.random.org. 
3. Tatiana Atanasova and M. Barova, “Exploratory analysis of Time Series for hypothe-

sizes feature values,” International Scientific Conference UniTech 2017, vol. II 
(Gabrovo: V. Aprilov University Publishing House, 2017), 399-403. 

4. Tasho Tashev and Vladimir Monov, “Large-Scale Simulation of Uniform Load Traffic 
for Modeling of Throughput on a Crossbar Switch Node,” 8-th Int. Conf. “Large-Scale 
Scientific Computations,” Sozopol, Bulgaria, 6-10 June 2011, LNCS, vol. 7116 
(Springer, 2012), 630-637. 

5. Pseudo-Random Number Generators, https://crypto.stanford.edu/pbc/notes/ 
crypto/prng.html. 

6. Benoit Badrignans, Jean Luc Danger, Viktor Fischer, Guy Gogniat, and Lionel Torres 
(eds.) Security Trends for FPGAS - From Secured to Secure Reconfigurable Systems 
(Netherlands: Springer, 2011). 

7. Robert G. Brown's General Tools Page, https://phy.duke.edu/ 

 

https://crypto.stanford.edu/pbc/notes/
https://phy.duke.edu/

	Conclusions
	Acknowledgment
	References

