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In this paper, we propose a new way to use ElGamal signature that will allow us 
to conserve the private key used for signing. This approach is mainly to prevent 
Known-Messages-Attack against ElGamal signature and its variants. This work is 
an amelioration of ElGamal digital signature in the group multiplicative, the 
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Introduction 

Most of the historians consider that the public key cryptography appears for the 
first time in 1976 when Diffie and Hellman published their seminar paper “New 
directions in cryptography.”2 A method to obtain a common key between two 
partners who communicate over a public insecure channel was described. It was 
based on the hardness of the famous discrete logarithm problem. In 1978 Rivest, 
Shamir and Adleman proposed an algorithm to encrypt and decrypt confidential 
messages.11 The technical security relies mainly on hard mathematical problems 
in number theory and particularly on integer factorization. Until now, their 
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discovery is considered as the most important and practical way to protect data. 
In 1985, ElGamal presented a cryptosystem inspired by the work of Diffie and 
Hellman.3 He also suggested a remarkable and secure signature protocol. In 1986, 
Koblitz 5 and Miller 9 independently showed that elliptic curves over fields offers 
suitable finite groups for public key cryptography. The new advantage is that, with 
comparative security level, private and public keys produced by the mean of 
elliptic curves has size less than that needed in the conventional public key 
cryptography.7 

In the last decades, several problems have arisen such as data integrity, user 
identification 10 and digital signatures.4 In 1999 Koblitz showed how to apply the 
same idea of Diffie and Hellman to elliptic curves in order to produce a common 
key.6 

In this work we propose an amelioration of ElGamal signature in the group 
multiplicative, the elliptic curves and their variations.  

Our technique uses the randomness of hash functions to reinforce the 
signature's security. By using the hash of the message and the private key, we 
guarantee the safety of our hidden parameters. We analyze the security and 
assess its complexity. 

The paper is organized as follows: the second section is a reminder of the groups 
defined using elliptic curves. The third section contains our contribution. We 
conclude in the fourth section. 

Throughout the sequel we use classical notations: ℤ, ℝ are respectively the sets 
of non-negative integers and real numbers. For every prime integer, we denote by 
𝐹𝑝 =  𝑍|𝑝𝑍 the field of modular integers with p elements. Let a,b,c be three 
integers we write 𝑎 ≡  𝑏 [𝑐] if c divides the difference 𝑎 −  𝑏 and 𝑎 =  𝑏 𝑚𝑜𝑑 𝑐 
if the remainder in the division of b by c. We use the notation #𝑆 to designate the 
cardinality of a set S. 

Let us start by a recalling of the elliptic curve groups construction. 

Elliptic Curves 

Definition 1. An elliptic curve over ℝ is the set of points that verified the equation 
𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, where the discriminant −(4𝑎3 + 27𝑏2)  is not equal to zero. 
We add to this curve a point at infinity noted 𝑶. 

We recall the additive operation on points over an elliptic curve. 
Let 𝐸(𝐹𝑝): 𝑦

2 = 𝑥3 + 𝑎𝑥 + 𝑏 be an elliptic curve. The sum of two points is 
defined as follows: 
𝑃 = (𝑥𝑃 , 𝑦𝑃) and 𝑄 = (𝑥𝑄 , 𝑦𝑄) ∈ 𝐸(𝐹𝑝): with 𝑃 and 𝑄 ≠ 𝑶.  
We have −𝑃 = (𝑥𝑃 , −𝑦𝑃)  and P + Q = R such that: 
• If 𝑄 =  −𝑃, then 𝑃 +  𝑄 =  𝑶 
• If 𝑄 ≠  −𝑃 , then 𝑃 +  𝑄 =  (𝑥𝑅 , 𝑦𝑅)  

with  𝑥𝑅  =  𝑚
2 − 𝑥𝑃  − 𝑥𝑄 and 𝑦𝑅  =  𝑚(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑅 

where the slope m is given by  
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m = {

𝑦𝑄−𝑦𝑃

𝑥𝑄−𝑥𝑃
    𝑖𝑓 𝑥𝑃 ≠ 𝑥𝑄

3𝑥𝑃
2+𝑎

2𝑦𝑃
     otherwise

 

Note that in this sum, we never use coefficient b to calculate the coordinates R. 
For more details, we refer the reader to the works of Buchmann, 1 Koblitz,6 and 
Menezes, Van Oorschot, and Vanstone.8 

 
Theorem 1.6 The set 𝐸(ℝ), with the binary operation + forms an abelian group 

whose identity element is the point at infinity 𝑶. 
 
Definition 2. An elliptic curve over the finite field 𝐹𝑝, where the characteristic is 

not 2 or 3, is the set of solutions  (𝑥, 𝑦) ∈ 𝐹𝑝
2 to the equation 𝑦2 ≡ 𝑥3 + 𝑎𝑥 +

𝑏 [𝑝], where the discriminant −(4𝑎3 + 27𝑏2) ≢  0[𝑝]. We add to this curve a 
point at infinity denoted 𝑶. 

The relation giving the sum of two points belonging to elliptic curves over ℝ 
remains valid modulo 𝑝. 

 
Theorem 2.5 The set (𝐸(𝐹𝑝), +) with the binary operation + forms an abelian 

group whose identity element is 𝑶. 
Since 1985, from Schoof's work, we have: 
 
Theorem 3.12 The order of elliptic curve that is defined over a finite field 𝐸(𝐹𝑝)  

is calculated by a deterministic algorithm in a polynomial time. 
 
Definition 3.14. A cryptographic hash function 𝐻, is a function such that the 

image of any element of long length gives a result having a smaller fixed length, 
and should have the following properties: 

 
1. Given a message 𝑚, the calculation of 𝐻(𝑚) can be done very quickly. 
2. H is preimage resistant: Given 𝑦, it is computationally infeasible to find 𝑚 

with 𝐻(𝑚)  =  𝑦. 
3. H is strongly collision-free: It is computationally infeasible to find 𝑚1 and 

𝑚2 with 𝑚1 ≠ 𝑚2 and 𝐻(𝑚1)  =  𝐻(𝑚2). 

ElGamal Digital Signature in 𝑭𝒑 3 

In 1985 ElGamal proposed a signature based on the difficulty of solving the 
discrete logarithm problem. He described his scheme as follows: 

Let 𝑚 be a document to be signed, where 0 ≤ 𝑚 ≤ 𝑝 −  1. To sign a 
document, Alice chooses a primitive root 𝛼, a secret key 𝑥 and calculates 𝑦 ≡
𝛼𝑥  [𝑝]. 

The equation of signature is: 
𝛼𝐻(𝑚) ≡ 𝑦𝑟𝑟𝑠[𝑝]                                                      (1) 

 
The signature for 𝑚 is the pair (𝑟, 𝑠), where  0 ≤ 𝑟, 𝑠 < 𝑝 −  1. 
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To sign 𝑚, Alice does the following: 
 
1. Chooses a random number 𝑘, such that 2 ≤ 𝑘 < 𝑝 −  1 and  

𝑔𝑐𝑑(𝑘, 𝑝 −  1) = 1 
2. Computes 

𝑟 ≡ 𝛼𝑘[𝑝] 

3. Calculates 

𝑠 ≡
𝐻(𝑚) − 𝑥𝑟

𝑘
[𝑝 − 1] 

To verify the validity of signature, Bob replaces 𝑚, 𝑟, and 𝑠 in equation (1). 

ElGamal Digital Signature over Elliptic Curves 14 

Alice wants to sign a document. She first must establish a public key. She chooses 
an elliptic curve 𝐸 over a finite field 𝐹𝑞 and a point 𝐴 ∈  𝐸(𝐹𝑞), the order of 𝐴 is a 
large prime 𝑛. Alice also chooses a secret integer 𝑎 and computes 𝐵 =  𝑎 𝐴. 

The equation of the signature is 
𝑓(𝑅) 𝐵 +  𝑠 𝑅 =  𝐻(𝑚) 𝐴                                                      (2) 

 
where 𝑓 is a function such that 𝑓: 𝐸(𝐹𝑞) → ℤ. 𝑓 must verify that: only a small 

number of inputs give the same output which is a large number. 
Alice's public key is 𝐸, 𝐹𝑞 , 𝑓, 𝐴, and 𝐵. The only private key is 𝑎. 
To sign a document, Alice does the following: 

1. Calculates 𝐻(𝑚) 

2. Chooses a random integer 𝑘 co-prime with 𝑛 and computes 𝑅 =  𝑘 𝐴. 

3. Determines 𝑠 ≡  𝑘−1(𝐻(𝑚) − 𝑎 𝑓(𝑅)) [𝑛]. 
 
The signed message is (𝑚, 𝑅, 𝑠). 
Bob verifies the signature as follows: 

1. Downloads Alice's public key. 

2. Computes 𝑉1  =  𝑓(𝑅) 𝐵 +  𝑠 𝑅 and 𝑉2  =  𝐻(𝑚) 𝐴. 

3. If 𝑉1 = 𝑉2, he declares the signature valid. 

Our contribution 

Amelioration of the digital ElGamal scheme in 𝑭𝒑 

It is known that we cannot sign two messages with the same key using the ElGamal 
signature,3 and it is a must to change the parameter 𝑘 after each signature. Indeed: 
Suppose that Alice signs two messages 𝑚1 and 𝑚2 with the same random number. 
She provides (𝑟1, 𝑠1) and (𝑟2, 𝑠2) which verifies : 
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(𝑆1) {
𝑟1 ≡ 𝛼

𝑘[𝑝]                             

𝑠1 ≡
𝐻(𝑚1) − 𝑥𝑟1

𝑘
[𝑝 − 1]

 

(𝑆2) {
𝑟2 ≡ 𝛼

𝑘[𝑝]  ≡ 𝑟1                                                 

𝑠2 ≡
𝐻(𝑚2) − 𝑥𝑟2

𝑘
≡
𝐻(𝑚2) − 𝑥𝑟1

𝑘
[𝑝 − 1]

 

If Eve, knows the two messages 𝑚1 and 𝑚2 and intercepts the two signatures 
(𝑟1, 𝑠1) and (𝑟2, 𝑠2) then she can do: 

 

𝑠1 − 𝑠2 ≡
𝐻(𝑚1) − 𝐻(𝑚2)

𝑘
[𝑝 − 1] 

This means 

𝑘 ≡
𝐻(𝑚1) − 𝐻(𝑚2)

𝑠1 − 𝑠2
[𝑝 − 1] 

We suppose that 𝑠1 − 𝑠2 is invertible modulo 𝑝 − 1. 
After the calculation of 𝑘, Eve will obtain the private key of Alice 𝑥 by one of the 

two systems (𝑆1) and (𝑆2). 
Now we describe our amelioration of the signature. We do not change the step 

of key generation. 
To sign a document 𝑚, Alice does as follows: 
1. Chooses a random number 𝑘 such that 

gcd(𝐻(𝑚 +  𝑘), 𝑝 − 1) =  1 
2. Computes 

𝑟 ≡ 𝛼𝐻(𝑚+𝑘)[𝑝] 
3. Computes 

𝑠 ≡
𝐻(𝑚) − 𝑥𝑟

𝐻(𝑚 + 𝑘)
[𝑝 − 1] 

The validation step of signature stays the same, Bob replaces 𝑚, 𝑟, and 𝑠 in 
equation (1). 

The added value in our amelioration is that we can sign as many messages as 
we want with the same parameter 𝑘, and we do not need to change it. Indeed: 

Suppose Alice signs two messages 𝑚1 and 𝑚2 with the same random number 
using our method. She provides (𝑟1, 𝑠1) and (𝑟2, 𝑠2) which verfies: 

(𝑆1) {

𝑟1 ≡ 𝛼
𝐻(𝑚1+𝑘)[𝑝]                

𝑠1 ≡
𝐻(𝑚1) − 𝑥𝑟1
𝐻(𝑚1 + 𝑘)

[𝑝 − 1]
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(𝑆2) {

𝑟2 ≡ 𝛼
𝐻(𝑚2+𝑘)[𝑝]                

𝑠2 ≡
𝐻(𝑚2) − 𝑥𝑟2
𝐻(𝑚2 + 𝑘)

[𝑝 − 1]
 

Eve can do the following: 

𝑠1 − 𝑠2 ≡
𝐻(𝑚1)−𝑥𝑟1

𝐻(𝑚1+𝑘)
−
𝐻(𝑚2)−𝑥𝑟2

𝐻(𝑚2+𝑘)
[𝑝 − 1]                     (3) 

Equation (3) contains three unknown variables 𝑥, 𝐻(𝑚1 + 𝑘), 𝐻(𝑚2 + 𝑘) and 
it is difficult to find the secret parameters 𝑘 and 𝑥. 

 
Remark 1. Note that Alice does not need to choose a parameter 𝑘 to sign, she 

can simply use her secret key 𝑥. 
Our method is not confined to ElGamal digital signature alone, but to all its 

variations. 
Menezes, van Oorschot and Vanstone say in their book handbook of applied 

cryptography [8] that the signing equation can be written as 𝑢 ≡ 𝑥𝑣 +  𝑘𝑤 [𝑝 −
1], where  𝑢 =  𝐻(𝑚), 𝑣 =  𝑟 and 𝑤 =  𝑠 (𝐻(𝑚) ≡ 𝑥𝑟 +  𝑘𝑠 [𝑝 − 1]). 

They also say that other signing equations can be obtained by permitting 𝑢, 𝑣 
and  𝑤 to take on the values  𝑠, 𝑟 and 𝐻(𝑚) in different orders. 

So, if we applied our amelioration over the six variations announced in their 
book, we find the following results: 

 
Table 1. Variations of the ElGamal signing equation.  

 
 𝒖 𝒗 𝒘 Signing equation [𝒑 − 𝟏] Verification [𝑝] 

1 𝐻(𝑚) 𝑟 𝑠 𝐻(𝑚) ≡ 𝑥𝑟 +  𝐻(𝑚 + 𝑘)𝑠 𝛼𝐻(𝑚) ≡ (𝛼𝑥)𝑟𝑟𝑠  

2 𝐻(𝑚) 𝑠 𝑟 𝐻(𝑚) ≡ 𝑥𝑠 +  𝐻(𝑚 + 𝑘)𝑟 𝛼𝐻(𝑚) ≡ (𝛼𝑥)𝑠𝑟𝑟  

3 𝑠 𝑟 𝐻(𝑚) 𝑠 ≡ 𝑥𝑟 +  𝐻(𝑚 + 𝑘)𝐻(𝑚) 𝛼𝑠 ≡ (𝛼𝑥)𝑟𝑟𝐻(𝑚) 

4 𝑠 𝐻(𝑚) 𝑟 𝑠 ≡ 𝑥𝐻(𝑚) +  𝐻(𝑚 + 𝑘)𝑟 𝛼𝑠 ≡ (𝛼𝑥)𝐻(𝑚)𝑟𝑟  

5 𝑟 𝑠 𝐻(𝑚) 𝑟 ≡ 𝑥𝑠 +  𝐻(𝑚 + 𝑘)𝐻(𝑚) 𝛼𝑟 ≡ (𝛼𝑥)𝑠𝑟𝐻(𝑚) 

6 𝑟 𝐻(𝑚) 𝑠 𝑟 ≡ 𝑥𝐻(𝑚) +  𝐻(𝑚 + 𝑘)𝑠 𝛼𝑟 ≡ (𝛼𝑥)𝐻(𝑚)𝑟𝑠  

 

Note that in the six cases Alice can sign several messages with the same key, or 
as we said in remark 1 only with the secret key 𝑥. 

Remark 2. If we use the signature equation (1) or (6) in Table 1, we need to 
make sure that 𝑔𝑐𝑑(𝐻(𝑚 +  𝑘), 𝑝 − 1)  =  1. For the other singing equations 
finding the inverse of 𝐻(𝑚 +  𝑘) modulo 𝑝 − 1 isn't required to compute 𝑠. 
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Hash functions 

In this amelioration we propose four hash functions of the SHA family. We leave 
the choice open depending on the user. A hash function is defined mainly by three 
aspects: Message size, Message digest size and security.13 

 
Table 2. Secure Hash Functions.  
 

In our method the key size is fixed and pseudo-random unlike ElGamal who 
takes randomly a number 𝑘. If we suppose that the running time of digital 
signature of ElGamal is 𝑇, finding an appropriate key will take 𝑇 +

 𝑇𝑖𝑚𝑒(𝐻𝑎𝑠ℎ(𝑚𝑒𝑠𝑠𝑎𝑔𝑒 + 𝑘)). Proposing this new way for generating the private 
key require more running time, but will enable us to keep a unique private key 𝑘 
for each signature. 

Amelioration of the digital ElGamal scheme in elliptic curves 

The problem to sign two messages with same key did accompany ElGamal digital 
signature even over elliptic curves. Indeed: 

Suppose that the user sign two messages 𝑚1 and 𝑚2 with the same key 𝑘 . 
The two signatures are (𝑚1, 𝑅1, 𝑠1) and (𝑚2, 𝑅2, 𝑠2) where 

𝑠1 ≡ 𝑘
−1(𝐻(𝑚1) − 𝑎 𝑓(𝑅)) [𝑛] 

𝑠2 ≡ 𝑘
−1(𝐻(𝑚2) − 𝑎 𝑓(𝑅)) [𝑛] 

Subtracting the two equations. Eve gets 

𝑠1 − 𝑠2 ≡ 𝑘
−1(𝐻(𝑚1) − 𝐻(𝑚2)) [𝑛]. 

This means 

𝑘 ≡
𝐻(𝑚1) − 𝐻(𝑚2)

𝑠1 − 𝑠2
[𝑛] 

Once Eve knows 𝑘, she can find 𝑎. 
Let us now apply our amelioration in this signature. We do not change the step 

of key generation. 
To sign a document Alice does as follows: 

1. Calculates 𝐻(𝑚). 

2. Chooses a random integer 𝑘 and computes 𝑅 =  𝐻(𝑚 +  𝑘) 𝐴.  
We suppose that 𝐻(𝑚 +  𝑘)  <  𝑛 

3. Determines  

                           Hash 
Functions 
Terms (bits) 

SHA-1 SHA-2 (256) SHA-2 (384) SHA-2 (512) 

Message Size < 264 < 264 < 2128 < 2128 
Message Digest 160 256 384 512 

Security 80 128 192 256 



Marouane Ihia & Omar Khadir, ISIJ 42 (2019): 117-126 
 

 124 

𝑠 ≡  𝐻(𝑚 + 𝑘)−1(𝐻(𝑚) − 𝑎 𝑓(𝑅)) [𝑛] 
 
The validation step of signature stays the same, Bob replaces 𝑅 and 𝑠 in 

equation (2). 
Now we suppose that Alice signs two messages 𝑚1 and 𝑚2 with the same 

random number using our method. She provides (𝑟1, 𝑠1)  and (𝑟2, 𝑠2)  which 
verifies 

𝑠1 ≡ 𝐻(𝑚1 + 𝑘)
−1[𝐻(𝑚1) − 𝑎 𝑓(𝑅1)] [𝑛] 

𝑠2 ≡ 𝐻(𝑚2 + 𝑘)
−1[𝐻(𝑚2) − 𝑎 𝑓(𝑅1)] [𝑛] 

 
Subtracting the two equations. Eve gets 

𝑠2 − 𝑠1 ≡ 𝐻(𝑚1 + 𝑘)
−1[𝐻(𝑚1) − 𝑎 𝑓(𝑅1)] − 𝐻(𝑚2 + 𝑘)

−1[𝐻(𝑚2)
− 𝑎 𝑓(𝑅1)] [𝑛] 

 
Which contains three unknown variables 𝐻(𝑚1  +  𝑘), 𝐻(𝑚2  +  𝑘) and 𝑎. 
Hence, we have solved the problem of signing several messages with the same 

key. Notice that our amelioration remains valid over all variations of ElGamal 
digital signature in elliptic curves. 

  
Remark 3. Note that in elliptic curves Alice can also sign only with the secret key 

𝑎 and she does not need to choose any other parameter. 

Security analysis 

In 𝑭𝒑 : 

Suppose that Alice signs several messages 𝑚1 , 𝑚2 , ⋯, 𝑚𝑡   using 𝑘1, 𝑘2, ⋯, 𝑘𝑡 
respectively. So, the system of equations is: 

{
 
 
 

 
 
 𝑠1 ≡

𝐻(𝑚1) − 𝑥𝑟

𝑘1
[𝑝 − 1]

𝑠2 ≡
𝐻(𝑚2) − 𝑥𝑟

𝑘2
[𝑝 − 1]

⋮                                                  

𝑠𝑡 ≡
𝐻(𝑚𝑡) − 𝑥𝑟

𝑘𝑡
[𝑝 − 1]

 

Suppose now that the user selects a parameter 𝑘 and signs several messages 
𝑚1 , 𝑚2 , ⋯, 𝑚𝑡 using our method. He finds the following system : 
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{
 
 
 

 
 
 𝑠1 ≡

𝐻(𝑚1) − 𝑥𝑟

𝐻(𝑚1 + 𝑘)
[𝑝 − 1]

𝑠2 ≡
𝐻(𝑚2) − 𝑥𝑟

𝐻(𝑚2 + 𝑘)
[𝑝 − 1]

⋮                                                  

𝑠𝑡 ≡
𝐻(𝑚𝑡) − 𝑥𝑟

𝐻(𝑚𝑡 + 𝑘)
[𝑝 − 1]

 

If we put 

{

𝑘1 ≡ 𝐻(𝑚1 + 𝑘)
𝑘2 ≡ 𝐻(𝑚2 + 𝑘)
⋮                               
𝑘𝑡 ≡ 𝐻(𝑚𝑡 + 𝑘)

 

The system (𝑆4) becomes exactly (𝑆3). Hence the two signatures have the same 
security. 

In elliptic curves: 

We do the same thing as the case above. 
ElGamal method: 

(𝑆5)

{
 

 
𝑠1 ≡ 𝑘1

−1(𝐻(𝑚1) − 𝑎 𝑓(𝑅1))[𝑛]

𝑠2 ≡ 𝑘2
−1(𝐻(𝑚2) − 𝑎 𝑓(𝑅2))[𝑛]

⋮                                                                 
𝑠𝑡 ≡ 𝑘𝑡

−1(𝐻(𝑚𝑡) − 𝑎 𝑓(𝑅𝑡))[𝑛]

 

And if we use the same change of variables like in (*), the system (𝑆6) becomes 
exactly (𝑆5). Hence the two methods have the same security. 

Complexity 

As we can see, in the method either in the group multiplicative or elliptic curves, 
the complexity of ElGamal digital signature is similar to our method. The only 
difference is the running time to compute 𝐻(𝑚 +  𝑘) is added to the signing 
equation. Hence, based on the hash function used the complexity might differ. 

Conclusion 

In this work we presented a new way to sign a message using ElGamal digital 
signature and its variations in group multiplicative and elliptic curves. Our 
approach secured ElGamal signature against Known-Messages-Attack. We 
analysed its security and showed that by using only one private key, we reinforced 
ElGamal signature and its variants. 
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